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Although the jet momentum flux has been traditionally accepted as constant, this is 
not in general true because a weak pressure field is induced in the ambient fluid with 
positive gradient and because the induced flow field carries momentum flux to the 
jet. The angle 4, at which the induced flow streamlines enter the jet, is the basic 
parameter which determines whether the jet momentum flux increases, remains 
constant or decreases. A theoretical solution is presented for the variation of the jet 
momentum flux in turbulent submerged jets in stationary ambient fluid. The 
solution presented in this paper generalizes previous theoretical solutions and is in 
good agreement with existing experimental results. The contribution of the induced 
pressure field relative to the induced velocity field in varying the jet momentum flux 
is investigated. The induced flow streamlines are calculated using non-constant jet 
momentum flux and are compared with Taylor’s solution (where constant jet 
momentum flux was assumed). 

1. Introduction 
For many years it was believed that the momentum flux in any jet is very nearly 

constant (e.g. Townsend 1976 ; Schlichting 1960 ; Rajaratnam 1976). Although the 
theoretical derivation of this statement is based on a number of assumptions (which 
are discussed below), many investigators viewed the constancy of momentum as an 
exact, unquestionable statement and used it to calibrate their Pitot tubes (see Flora 
& Goldschmidt 1969), or as criterion for the acceptance of ‘reliable’ data (see Rodi 
1975, p. 105). The theoretical hypotheses that lead to the constancy of the jet 
momentum flux are basically two : first, ambient pressure p is everywhere hydrostatic 
and, second, the induced flow field always has streamlines perpendicular to the jet 
axis. The first hypothesis is never true because there must be a small but significant 
pressure difference to establish the movement of surrounding fluid into the jet. The 
second hypothesis is not in general true. These two approximations simplify the 
theoretical examination of the turbulent jet but introduce an error that has to be 
determined . 

To the best of our knowledge the assumption of the constancy of the jet 
momentum flux was questioned for the first time by Kotsovinos (1975) who argued 
that there are two factors which act on the jet momentum flux : (i) the pressure field 
generated in the ambient fluid, which always decreases the jet momentum flux ; (ii) 
the induced flow towards the jet which increases or decreases the jet momentum flux, 
depending on the angle 

Kotsovinos (1975, p. 37) estimated the decrease of the momentum flux in a plane 
jet assuming that the entrainment into the jet (i.e. the jet volume flux) depends on 
the decreased local momentum flux (i.e. considering the effect which the decrease of 
the momentum flux exerts on the induced flow). However, he simplified the problem 
by assuming that the induced pressure field in the ambient fluid is negligible. His 

with which the induced flow streamlines enter the jet. 
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solution for a plane jet is the same as the solution reported later by Schneider (1985), 
who arrived at  his results using a different approach to the problem (inner and outer 
expansions). We will show in this paper that it is not a good approximation to neglect 
the induced pressure. Kotsovinos (1978 b) included the contribution of the induced 
pressure in decreasing the jet momentum flux. However, he simplified the 
mathematical solution by assuming that the entrainment into the jet (i.e. the jet 
volume flux) depends on the initial momentum flux. He applied these ideas to the 
plane jet out of a wall and he found that to a first approximation 

(1) 
where M ( x )  and Me are the momentum fluxes a t  distances x and zero respectively 
from the jet exit, and D the slot thickness of the plane jet. The momentum flux given 
by (1) vanishes a t  a distance x / D  = los (i.e. a distance which is very large for 
practical applications). However, mathematically (1) is not precise because, as 
Schneider (1985) pointed out, the solution given by it breaks down as the distance 
from the jet orifice tends to infinity, i.e. M ( x )  + - co as x+ - 00. 

Therefore it appears that there are open questions regarding the theoretical 
investigation of the variation (increase or decrease) of the jet momentum flux. The 
purpose of this paper is to present a precise solution for the variation of the jet 
momentum flux M ( x )  with the axial distance x, and to improve our understanding of 
the important role of the induced ambient pressure. The 'coupling' of the jet 
momentum flux with the induced flow streamlines is also explored and a solution is 
presented for the induced flow field based on non-constant jet momentum flux. 

M ( x ) / M e  = 0.983-0.0693 In (x/6D), 

2. Analysis of the problem 
Without loss of generality we restrict our analysis to two-dimensional (plane) jets. 

Basic results are given by Kotsovinos (1978b). A plane jet is defined as a source of 
kinematic fluxes of mass V,  and momentum Me (per unit span) through a slot of 
thickness D into a finite space filled with fluid of density p. It is assumed that the jet 
is turbulent and that the ambient fluid is quiescent, except for flows induced by the 
presence of the jet. The system of coordinates and the various symbols are defined 
in figure 1. The jet boundaries can be described by the equation y = fB(x)  = f kx 
(see figure i) ,  where k is an experimental constant, approximately equal to 0.25. 
Mean flow and turbulent quantities are denoted by a bar and by a prime, 
respectively. The jet volume flux V(x) is defined as 

V ( X )  = p"i E(Z, y) dy. (2) 
- B W  

The induced flow streamlines enter the jet at an angle # (see figure 1 for definition). 
The axial momentum equation acros the jet can be integrated from x = 0 to x to 
obtain (for a detailed proof see Kotsovinos 1978b) 

M ( x )  = Me + C ( x )  + H ( x ) ,  (3) 

where the term (4) 

is the kinematic momentum flux of the jet (or as Benjamin 1968 named it, the flow 
force of the jet) ; Me is the input momentum flux ; the term 

C(X) = 2( -m+ ka2) dx = 1 tan# (!!!'dX 
2(1-ktan$) dx 
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FIGURE 1.  Geometry of the plane jet. 

is the contribution of the induced flow momentum flux, calculated at the jet 
boundaries, which can be either positive or negative (i.e. the momentum of the 
induced flow field increases or decreases the jet momentum flux M(x)) depending on 
the induced flow angle q5 ; and the term 

is the contribution of the mean pressure p(x, kx) generated in the ambient fluid and 
calculated at  the jet boundaries. This term is always negative (i.e. always tends to 
decrease the jet momentum flux). 

Therefore, the jet momentum flux M(x) may increase, remain constant, or 
decrease, according to whether the sum C(x)  +H(x) is respectively larger, equal to or 
smaller than zero. 

Combining (5) and (6), the jet momentum flux (3) can be written: 

k( 1 + tan2 q5) - tan' ] e T d x .  
4( - 1 + k tan q5)2 2( - 1 + k tan$) dx (7) 

The problem of integrating (7) is therefore reduced to finding an appropriate 
expression for the induced flow angle $(x) and for the increase of volume flux dV/dx. 

Taylor (1958) examined the flow induced by a fully developed jet in an infinite 
medium. He found that the induced flow streamlines represent parabolas which enter 
the jet axis at a constant angle q5. In  what follows we shall adopt this finding of 
constant induced flow angle q5, and discuss it in more detail in 53. For 0 < x < xo, 
where xo = 6D, the jet flow has not fully developed and the increase in volume flux 
dV/dz is given by (see Liepmann & Laufer 1947; Hussain & Clark 1977) 

dV 
dx 
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where C, is an experimental constant which strongly depends on the initial boundary 
layers and varies between 0.06 to 0.16. 

Integrating (7) from x = 0 to x = xo we find the jet momentum flux at the end of 
the flow development region : 

] ~ e .  (8) 
tan 4 - k( 1 + tan2 $) M ,  =M(x,) =Me-(C,)2 - ("I[ D 4( - 1 + ktan$)2 2( - 1 + k  tan$) 

For C, = 0.07, xo = 6D and for 4 = 45O, we find M ,  = 0.974Me and for 4 = Oo, M, = 
0.988Me. 

For x > x,, the jet flow is effectively fully developed and the increase in volume 
flux dV/dx, due to the entrainment of ambient fluid, is given (on dimensional 
grounds) by the equation 

where E is an experimental constant, which is related to the entrainment coefficient 
a and to the half-width growth rate db(x)/dx through the relation 

The jet growth rate db/dx varies from 0.09 to 0.12 and therefore E varies from 0.068 
to 0.09, but for the purpose of this paper an average value of the jet growth rate and 
of E will be assumed (see List 1982a,b). 

The initial conditions (nozzle shape, jet turbulence level) are predominant factors 
in the growth of the jet mixing layers for the first few jet diameters (e.g. up to x z 
150). However, we should point out that Flora & Goldschmidt (1969), performed an 
experimental investigation of the plane jet using nine different nozzle shapes (abrupt, 
gradual, circular, etc.) in an attempt to correlate the nozzle shape with variations in 
the jet growth rate. They reported that changes in the contracting section did not 
influence the spreading rate of the jet. 

This agrees with the experimental results of Hussain & Clark (1977). The available 
experimental evidence is that the spreading rate of the plane jet a few diameters from 
the exit (e.g. for x/D > 15) is almost independent of the initial boundary conditions 
(see also Gutmark & Wygnanski 1976, for a similar comment). Kotsovinos (1975, 
1976) presented convincing evidence that the reported jet spreading rates from 
various investigators exhibit substantial scatter because the growth of the jet is not 
linear on a large scale. 

Therefore (7)  can be integrated from x = xo to x and we obtain 

where 

X 
M,(x) = M,-hM,,ln-, 

2 0  

1 k( 1 + tan2 4) - 
4( - 1 + k tan $)2 2( - 1 + k tan $) ' 

(9) 

and where M,(x) is the first-order approximation to the jet momentum variation 
(decrease or increase). Equation (9) is identical with the solution proposed by 
Kotsovinos (1978b). 
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We will now try to find higher-order approximations for the jet momentum flux, 
as follows. The second-order approximation M 2 ( s )  of the variation of the jet 
momentum flux with x is found assuming that the (local) induced volume flux dV/dx 
depends on the local momentum flux M , ( x )  given by (9) (and not on the initial 
momentum flux Mo),  i.e. we take into account the reactive effect which the 
modification of the momentum flux exerts on the entrainment of ambient fluid, 

A similar hypothesis has been adopted by Kotsovinos (1975, p. 37) and Schneider 
(1985). Combining (7), (9) and (11) we find 

In order to find the third-order approximation M 3 ( x )  for the jet momentum flux we 
now assume that the local entrainment dV/dx depends on the local jet momentum 
flux M 2 ( x )  given by (12), i.e. dV 

- dx = € i 4 ! f 2 ( X ) ~ X : - f ,  (13) 

so that we obtain the third-order approximation for the jet momentum flux, 

In general, the n-order approximation M,(x)  of the jet momentum flux is given by 

(15) 
x A 2  A3 A" -1-Aln-+- ln- -- ln- +(-i)"- ln- . 

MO 2 0  2 (  :) 3 ! (  22,)" n!(  ;)̂ Mn ( x )  

For n +  co this series is equivalent to ( X / X ~ ) - ~ ,  i.e. 

MO 
It is interesting to notice that the jet momentum flux M ( x )  decreases when A > 0, 

increases when A < 0 and remains constant only when A = 0. This may explain the 
experimental results of various investigators who found a decrease or an increase of 
momentum flux. The critical experimental parameter which determines the 
parameter A is the angle 4. 

The variation of the exponent A with the angle 4 is plotted in figure 2. It is 
apparent that the exponent A is positive when -7.08' < 9 and negative when 
4 < -7.08', i.e. when the induced flow is in the same direction with the jet flow and 
makes an angle 4 less than -7.08". 

The dimensionless jet momentum flux M ( s ) / M o  is calculated from (16) and is 
plotted in figure 3 for various values of the angle 4. It is easy to observe that the jet 
momentum is conserved only when 4 = -7.08'. For 4 > -7.08' the jet momentum 
flux decreases and for 4 < -7.08' it increases with the axial coordinate x .  This is 
interesting because it gives a hint for an explanation of the increase of the jet 
momentum flux found by some experimentalists (see for example Hussain &, Clark 
1977). This point is further discussed below. 

The exponent A given by (10) can be written as 

A = A, + A,, 
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FIQURE 3. The theoretical prediction of the jet momentum flux M(x) /Mo as a function of the 
axial distance x / D  and the induced flow angle q5. 

where k( 1 + tan2 9) 
4(-1+ta11#)~ 

A, = E 

is the contribution of the induced pressure field and where 

E tan 9 
2( 1 - k tan #) 

A, = 

is the contribution of the induced velocity field (see figure 2). 
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FIGURE 
9 (deg.) 

4. The ratio (h,/A,I (see (17a, b ) )  as a function of the angle 4. 

The ratio Ih,/h,l is a measure of the importance of the induced velocity field 
relative to the pressure field in decreasing the jet momentum flux. This ratio is 
plotted in figure 4 as a function of the angle 4. It is apparent from figure 4 that for 
-40" c qj c 40" the ratio IA,/h,l varies from zero to 4.8, which implies that the 
contribution of the pressure field is important and should not be neglected, e.g. for 
4 = 2" the contribution of the pressure field in decreasing the jet momentum flux is 
several times larger than the contribution of the induced velocity field. The relative 
contribution of those two factors is also indicated in figure 5 ( a )  whereM(x), C(x)  (the 
contribution of the momentum flux of the induced flow) and H ( x )  (the contribution 
of the induced pressure) are calculated and plotted as a function of the axial distance 
x /D for an induced flow angle q5 = 45" (a plane jet out of a wall). It is clear that the 
contribution of the induced pressure in decreasing the momentum flux is significant. 

The terms H ( z )  and C(z) at an axial distance x/D = 150 are plotted as a function 
of the angle qj in figure 5 ( b ) .  We observe that the pressure term H ( z )  is always 
negative and varies slightly with the angle 4. In contrast, the induced flow term C ( x )  
varies considerably with the angle qj, taking both positive and negative values. For 
qj c O", the induced flow adds momentum flux to the jet momentum flux. For 
4 = - 7.08", C(z) + H ( x )  = 0, i.e. the (positive) induced flow momentum flux C ( x )  
cancels the negative contribution of the induced pressure force H ( x )  and the jet 
momentum flux is conserved, i.e. M ( z )  = M,. 

The theoretical solution presented in this paper, given by (16), is compared below 
with the solutions given by previous investigators. Kraemer (1971) found that for a 
plane jet out of a wall the momentum flux of the induced flow field in a plane 
perpendicular to the jet axis from y = - 00 to y = + 00 is 0.03Mo. His calculations are 
not relevant to the problem we study (see Kotsovinos 1978b for discussion). 
Kotsovinos (1975, p. 37) argued that the jet momentum flux for a plane jet out of a 
wall is not constant but decreases (in agreement with reliable experimental results) 
owing to the induced pressure and to the induced flow momentum flux along the jet 
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FIQURE 5. (a) The contribution of the induced flow momentum flux C(s) and of the pressure term 
H ( s )  in decreasing the jet momentum flux M ( z ) ,  for q5 = 45' (a plane jet out of a wall). M ( r )  = 
M,+ C ( r )  + H ( z ) .  (6) The induced flow momentum flux C ( r )  and the pressure term H ( z )  (see (5) and 
(6)) calculated at x / D  = 150 as a function of the angle 4. 

boundaries. By neglecting the pressure field and assuming that the volume flux is 
based on the local momentum flux M ( x )  he found that 

t tan glZ(1-k tan$) 
9 

where the constant xo was put equal to 3.30. Apparently the exponent in (18) is 
equal to A, (see (17b)) .  
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FIGURE 6. Theoretical models for the decay of the momentum flux of a two-dimensional jet out 
of a wall (63, = 90'). 

Later, Kotsovinos (1978b) included the induced pressure field in his solution but 
he neglected the effect which the decrease of the momentum flux exerts on the 
induced flow, stating that his solution (see (1)) is a valid approximation for values of 
x/D of the order of a few thousands. 

Schneider (1985) also neglected the pressure field and the jet expansion (i.e. he 
assumed k = 0) and found, using inner and outer expansions, that 

Apparently, for k = 0, his solution is identical with Kotsovinos's (1975) solution, 
given by (18). The constant xo could not be determined and Schneider made the 
assumption that xo = D .  However, xo represents (physically) a length of flow 
development region approximately equal to 40 to 6D. 

These theoretical models are compared in figure 6 with the solution of this paper 
(equation (16)). Kotsovinos's (1975) and Schneider's (1985) solutions appear to 
underestimate the decay of the jet momentum flux because they neglected the 
contribution of the induced pressure. 

3. The modified induced flow field 
The analysis of the previous section indicated the importance of the angle q5 at 

which the induced flow streamlines enter the jet. The flow induced by a jet has been 
studied by Stewart (1956), Taylor (1958), Wygnanski (1964), Kraemer (1971) and 
Schneider (1981). Taylor (1958) assumed that the flow induced by a jet is to a fist 
approximation an inviscid potential flow. He also assumed that, since the jet 
kinematic mass flux V(s) increases with x, the ambient fluid sees the jet as a 
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distribution of sinks along the jet axis of strength dV/dx based on constant 
momentum flux, given by the relation 

Assuming the geometry of figure 1, he found that the induced flow streamlines enter 
the jet axis a t  a constant angle q5 = q5T which is given by Taylor (1958) or Kraemer 
(1971) 

(19) q5 -goo-’@ 
T -  2 W’  

Below, we explore the modification of Taylor’s solution due to the variation of the 
jet momentum flux. It is apparent that  there is an inter-relationship between the jet 
momentum flux and the induced flow, i.e. the induced flow field modifies the jet 
momentum flux which in turn modifies the jet entrainment and the induced flow 
field. It seems therefore reasonable to  assume that the strength of the sinks along the 
jet axis depends on the local momentum flux M(x), i.e. 

1 1  - = &;JqX)- px -- dV 
ax  

or, in combination with (16), 

Assuming slip conditions a t  the solid walls which bound the induced flow (see 
figure 1) and infinite space filled with ambient fluid without stratification, the 
induced flow is irrotational because a t  infinity the vorticity is zero. Schneider (1981) 
pointed out that the error resulting from assuming slip conditions a t  the solid walls 
is negligible for plane jet flow (but non-negligible for a round jet). 

The induced flow streamlines Y(x, y) satisfy : 
(i) the Laplace equation 

(ii) the slip condition at  the solid walls Y(x,y) = 0;  
(iii) the boundary condition along the jet axis (see Kotsovinos 1978a) 

P(x ,  y) = 0;  (20) 

The exponent A (see (10)) depends on the angle q5 which, in turn, is determined 
from the streamline Y(x,y) (i.e. from the solution of the above problem). However, 
for a given value of the coefficient A,  we find that the stream function that satisfies 
the Laplace equation and the boundary conditions (20) and (21) is given in 
cylindrical coordinates by the similarity solution 

Y ( r ,  0) = rr(1-A)/2[cosi(0(1 -A))-Asini(B(l - A ) ) ]  (22) 

where r=- ’ 
l - A  

(24) 
1 

tan +Ow( 1 - A )  ’ 
and A =  
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FIQURE 7. The modified solution for the induced flow angle q5 as a function of the angle 8, 

between the bounding walls. 
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FIQURE 8. The difference between the modified induced flow angle q5 (equation (25)) and the angle 
q5= (Taylor’s solution, (19)) plotted as a function of the angle 8, between the bounding walls. 

8, (deg.) 

The modified induced flow streamlines Y(T, 8) (given by (22)), enter the jet axis a t  
an angle 4 that is implicitly given by the equation 

4 = 900-~8,(1-A). (25) 
Using a computer and by the method of iterations we can find 4 as precisely as we 

want : starting from Taylor’s solution (equation (19)) we determine the coefficient A 
from (lo), and then calculate A from (24) and $ from (25). With the new value of 4, 
we obtain a better approximation for the coefficient A, for A and for 4 and so on. The 
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Wall' 
FIQURE 10. Streamlines of the flow induced by a plane jet emerging from a plane wall (8, = 90"). 
-, Present solution (non-constant momentum flux) ; -.-.-.- , solution with constant 
momentum flux (Taylor 1958). 

iterations stop when the difference between the new value for y5 and its previous 
value is less than O.O0lo. 

The modified solution for the angle qi is plotted in figure 7 as a function of the angle 
8, to the bounding walls. For a plane jet out of a wall (8, = 90") we predict q5 = 
48.7". The difference between the angle y5 calculated in this paper (equation (25)) and 
the angle qiT from Taylor (1958) is equal to +@,A and is plotted in figure 8 as a 
function of the angle 8,. There appears to be a difference between these two 
solutions. 

The modified induced flow streamlines given by (22) are drawn in figures 9, 10 and 
11 for 8, equal to 75O, 90" and 180" respectively, together with the streamlines from 
Taylor (1958) for comparison; it is observed that our solution predicts that the 
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FIQURE 11. Flow streamlines induced by a plane jet in open space, 8, = 180'. -, Taylor's 
solution (1958); -.-.-.- , present solution. 

streamlines enter the jet at  an angle which is steeper than the classical Taylor's 
solution for 8, < go", but that for 8, = 180" (jet in open space) the streamlines of 
both solutions practically coincide. 

Van Dyke (1982, picture 169) shows the flow induced by a plane jet in open space, 
where it is observed that the induced flow streamlines are parabolas, entering the jet 
axis at  constant angle 4. Kotsovinos (1975) and Goldschmidt, Moallemi & Oler 
(1983) observed a negative longitudinal component of the mean velocity vector a t  
the edges of a plane jet out of a wall, in agreement with the theoretical prediction. 
Giger (1987, p. 46) and Lippisch (1958) observed the induced flow streamlines in a 
plane jet out of a wall. Their experimental results indicate a small difference between 
the experimentally determined streamlines and Taylor's streamlines, in qualitative 
agreement with the modified streamlines plotted in figure 10 (see also Kraemer 1971). 

4. Comparison with experimental results 
In order to compare the theoretical solution with the experimental findings, it i s  

necessary to take into account the following remarks : 
(i) Experimental results which correspond very closely to the flow configuration of 

figure 1 can be strictly compared with the theoretical solution for the variation of the 
jet momentum flux (16). The bounding walls of figure 1 should extend to a transverse 
distance many times the axial distance where measurements are taken. The jet 
aspect ratio should be small to avoid secondary flow effects (see Foss & Jones 1964 
or Giger 1987). 
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(ii) The calculated induced flow field is based on an idealization of the flow 
geometry (i.e. infinite space, infinite bounding walls, infinite jet axis) and on an 
idealization of the ambient fluid (i.e. homogenous fluid a t  exactly the same 
temperature everywhere, with no ambient currents except for the currents induced 
by the jet itself). Owing to the finite dimensions of the laboratory rooms (for air jets) 
or of the water tanks (for the water jets) a large recirculation is induced in practice 
which influences the induced flow streamlines. Most important, weak density (or 
temperature) stratification of the ambient fluid may seriously modify the angle q5. In  
that case knowledge of the direction of the jet flow relative to the vertical is essential. 
The theoretical solution for the induced flow angle ignores the fact that for x < xo the 
flow resembles the flow of a mixing layer and is very sensitive to initial conditions. 
Therefore, given enough space, the angle q5 becomes constant at distances x > xl, 
where x is of the order of xo. For x = 0 the induced flow is almost parallel to the 
bounding wall and therefore the angle q5(0) is 90"-0,. It is assumed that in the 
region 0 < x < x1 the angle $(x) varies linearly from q5(0) to q5(x1). 

(iii) The theoretical solution concerns the variation of the jet, momentum flux 
M ( z ) ,  as defined by (4), i.e. M ( z )  includes the contribution from longitudinal 
turbulence and mean static pressure, but most experimentalists measured only the 
axial mean velocity profile. However, the experimental results of Miller & Comings 
(1957), Bradbury (1965) and Hussain & Clark (1977) indicate that approximately 

Therefore, the momentum flux M(x) can be estimated from mean axial velocity 
measurements assuming that 

M(x) = r(x' a2(x, y) dy. 
-BW) 

(iv) For y < 0.171~1, it is sufficient to  measure accurately the axial velocity profile 
u(x, y) in the jet flow in order to have a very good estimation of the momentum 
flux M(x) (see Kotsovinos 1978b). This is an important point because existing 
experimental results are inaccurate close to the jet boundaries (i.e. for y > 0.171~1 
where flow reversals are observed, see Kotsovinos 1975, 1977, and Goldschmidt et al. 
1983). These measurements require instrumentation capable of distinguishing flow 
direction. However, we point out again that these inaccuracies do not greatly 
influence the magnitude of the experimentally calculated momentum flux. 

Below, we compare the experimental results for a plane jet out of a wall with the 
theoretical prediction. We choose the plane jet out of a wall because it has been 
extensively investigated and good reliable data are available. The experimental 
results of Heskestad (1965), Kotsovinos (1975), Miller (1957), Giger (1987), 
Goldschmidt & Eskinazi (1966) are compared in figure 12 (a-e) with the theoretical 
prediction of this paper, (16). The constant angle q5 which fits the experimental data 
of Heskestad is identical with the theoretical angle 48.7" and for the other 
experiments varies from 43" to 59.5". It was also assumed that the induced flow angle 
q5 becomes constant for x > xl, and that in the region 0 < x < x,, q5 increases linearly 
with x, from 0" to q5. This distance x1 was equal to  xo = 6D for all the experiments, 
with the exception of Goldschmidt & Eskinazi's ( 1966) experimental results, where 
x1 = 3x0. The constants e and C, were equal to 0.0784 and 0.07 respectively. 

All the experimental results in figure 12 appear to follow the trend predicted by the 
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FIQURE 12. Comparison between experimental data and theoretical predictions. (a) Data from 
Heskestad (1965) and theoretical prediction with q5 = 48.7'; ( b )  Kotsovinos (1975) and q5 = 47';(c) 
Miller (1957) and q5 = 43'; (d) Giger (1987) and 9 = 45'; (e) Goldschmidt (1964) and 6 = 59.5'. 
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theory. However all these experimental data from various investigators do not 
coincide. Assuming that all these results are reliable, we may argue that this is due 
(i) to  differences of the induced flow in the tank (or room), (ii) to  differences in the 
initial mixing layers. 

5. Concluding remarks 
The balance (conservation) of momentum flux for the fluid contained within a 

closed surface defined by the jet boundaries y = f k x  and the jet cross-section a t  
distance x disclosed that the initial (input) jet momentum flux is equal to the sum 
of the jet momentum flux M ( x )  (which includes contributions from longitudinal 
turbulence and mean static pressure) and of the fluxes along the jet boundaries of the 
induced flow momentum and of the pressure force. 

The theoretical analysis assumed steady-state jet flow. Since the jet velocity is 
finite, steady-state induced flow and pressure fields are achieved at infinite time. The 
theoretical solution presented in this paper appears to indicate that for A < 0 and 
x + co the jet momentum flux M ( x )  + co, that for A = 0, M ( x )  = M,, and that for A > 
0 and x+ 00, M ( x )  + O .  

The angle q5 a t  which the induced flow streamlines enter the jet is found 
theoretically assuming infinite space, the jet extending to infinity and a steady-state 
solution. The jet entrainment is simulated by a distribution of sinks along the jet axis 
of strength corresponding either to  constant (Taylor solution) or variable (this paper) 
momentum flux. The minimum value of the theoretically calculated angle q5 for the 
geometry of figure 1 is obtained for 8, = 180' (jet in open space), and is zero 
according to Taylor's solution (see (19)) and equal to -0.5' according to this paper. 
Moreover the theoretical solution predicts that the angle q5 is independent of the x- 
axis. The explicit solution for the variation of M ( x )  with distance x (equation (16)) 
was made possible because we considered that the angle q5 is independent of the x 
axis, from x = xo to infinity. 

The theoretical analysis presented in this paper indicates that the jet momentum 
flux M ( x )  decreases for q5 > -7.08', remains constant for q5 = -7.08' and increases 
for q5 < -7.08'. Since the minimum value of the theoretically calculated angle q5 is 
-0.5' (plane jet in open space, 8, = 180'), we could argue that reliable experimental 
data that indicate constancy or increase of the momentum flux M ( x )  are associated 
with angles q5 much smaller than -0.5', i.e. with angles q5 that deviate considerably 
from the theoretical (irrotational, inviscid) induced flow field. It seems reasonable 
to assume that, owing to  finite dimensions of laboratory rooms, or to  viscous effects 
along the bounding walls and weak temperature stratification, the angle q5 may 
attain values much smaller than zero and, in addition, may depend on the axial 
distance x. Moreover, the experimental results of Bradshaw (1966), Bradshaw (1977), 
Goldschmidt &, Bradshaw (1981), Hussain &, Clark (1977), indicate that up to  
x /D  = 15, there is a systematic dependence of the jet widening, mean centreline 
velocity decay and volume (or mass) flux, on mean and turbulent characteristics of 
the initial (upstream) boundary layer. Since the volume flux is related to local 
momentum flux, i.e. to the strength of sinks and to  the induced flow, it is clear from 
the analysis of this paper that  the initial conditions influence the angle q5 at which 
the induced flow streamlines enter the jet. 
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